

## Features

- Low Switching Losses
- $V_{ce(sat)}$  with positive temperature coefficient
- Low Inductance
- Isolated copper baseplate using DBC technology
- Maximum Junction Temperature 175°C
- Epoxy Meets UL 94 V-0 Flammability Rating
- Lead Free Finish/RoHS Compliant (Note 1) ("P" Suffix Designates RoHS Compliant. See Ordering Information)

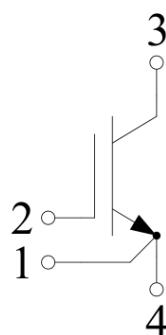
# IGBT Modules

## 1200V 100A

## Applications

- AC and DC motor control
- PFC
- SMPS
- Brake switch

| Parameter                                                          | Symbol                                      | Rating    | Unit   |
|--------------------------------------------------------------------|---------------------------------------------|-----------|--------|
| Collector-Emitter Voltage@ $V_{GE}=0V, I_c=1mA, T_{vj}=25^\circ C$ | $V_{CES}$                                   | 1200      | V      |
| Continuous Collector Current @ $T_c=80^\circ C$                    | $I_c$                                       | 100       | A      |
| Repetitive Peak Collector Current @ $T_p=1ms$                      | $I_{CRM}$                                   | 200       | A      |
| Gate-Emitter Voltage@ $T_{vj}=25^\circ C$                          | $V_{GE}$                                    | $\pm 20$  | V      |
| Isolation Voltage @ $f=50Hz, t=1min$                               | $V_{isol}$                                  | 2500(Min) | V      |
| Weight of Module                                                   | G                                           | 35        | g      |
| Module Electrodes Torque:M4                                        | $M_t$                                       | 0.7~1.5   | $N^*m$ |
| Module-to-Sink Torque :M4                                          | $M_s$                                       | 0.7~1.5   | $N^*m$ |
| Total Power Dissipation<br>(IGBT-Inverter)                         | $T_c=25^\circ C$<br>$T_{vjmax}=175^\circ C$ | $P_{tot}$ | 535    |
|                                                                    |                                             |           | W      |


Note:

1. High Temperature Solder Exemptions Applied, see EU Directive Annex 7a.

GJ



Circuit Diagram



**Electrical Characteristics of IGBT @ 25°C (Unless Otherwise Specified)**

| Parameter                            | Symbol        | Test Conditions                                                                                                    | Min | Typ  | Max  | Unit     |
|--------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------|-----|------|------|----------|
| Gate-emitter Threshold Voltage       | $V_{GE(th)}$  | $I_C=4\text{mA}, V_{CE}=V_{GE}, T_{vj}=25^\circ\text{C}$                                                           | 5.0 | 5.8  | 6.5  | V        |
| Collector-Emitter Cut-off Current    | $I_{CES}$     | $V_{CE}=1200\text{V}, V_{GE}=0\text{V}, T_{vj}=25^\circ\text{C}$                                                   |     |      | 1.0  | mA       |
|                                      |               | $V_{CE}=1200\text{V}, V_{GE}=0\text{V}, T_{vj}=125^\circ\text{C}$                                                  |     |      | 5.0  | mA       |
| Collector-Emitter Saturation Voltage | $V_{CE(sat)}$ | $I_c=100\text{A}, V_{GE}=15\text{V}, T_{vj}=25^\circ\text{C}$                                                      |     | 1.75 | 2.25 | V        |
|                                      |               | $I_c=100\text{A}, V_{GE}=15\text{V}, T_{vj}=125^\circ\text{C}$                                                     |     | 2.15 |      |          |
|                                      |               | $I_c=100\text{A}, V_{GE}=15\text{V}, T_{vj}=150^\circ\text{C}$                                                     |     | 2.20 |      |          |
| Input Capacitance                    | $C_{ies}$     | $V_{CE}=25\text{V}, V_{GE}=0\text{V}, f=1\text{MHz}, T_{vj}=25^\circ\text{C}$                                      |     | 5.80 |      | nF       |
| Output Capacitance                   | $C_{oes}$     |                                                                                                                    |     | 0.54 |      |          |
| Reverse Transfer Capacitance         | $C_{res}$     |                                                                                                                    |     | 0.35 |      |          |
| Internal Gate Resistance             | $R_{gint}$    |                                                                                                                    |     | 2.5  |      | $\Omega$ |
| Turn-On Delay Time                   | $td_{(on)}$   | $V_{CE}=600\text{V}, I_c=100\text{A}, V_{GE}=\pm 15\text{V}, R_G=10\Omega, T_{vj}=25^\circ\text{C}$                |     | 122  |      | ns       |
| Rise Time                            | $t_r$         |                                                                                                                    |     | 50   |      |          |
| Turn-Off Delay Time                  | $td_{(off)}$  |                                                                                                                    |     | 335  |      |          |
| Fall Time                            | $t_f$         |                                                                                                                    |     | 72   |      |          |
| Turn-On Energy                       | $E_{on}$      |                                                                                                                    |     | 13.5 |      | mJ       |
| Turn-Off Energy                      | $E_{off}$     |                                                                                                                    |     | 7.0  |      |          |
| Turn-On Delay Time                   | $td_{(on)}$   | $V_{CE}=600\text{V}, I_c=100\text{A}, V_{GE}=\pm 15\text{V}, R_G=10\Omega, T_J=125^\circ\text{C}$                  |     | 135  |      | ns       |
| Rise Time                            | $t_r$         |                                                                                                                    |     | 55   |      |          |
| Turn-Off Delay Time                  | $td_{(off)}$  |                                                                                                                    |     | 460  |      |          |
| Fall Time                            | $t_f$         |                                                                                                                    |     | 76   |      |          |
| Turn-On Energy                       | $E_{on}$      |                                                                                                                    |     | 18.6 |      | mJ       |
| Turn-Off Energy                      | $E_{off}$     |                                                                                                                    |     | 10.2 |      |          |
| SC Data                              | $I_{sc}$      | $t_p \leq 10\text{us}, V_{GE}=15\text{V}, T_{vj}=150^\circ\text{C}, V_{cc}=600\text{V}, V_{CEM} \leq 1200\text{V}$ |     | 350  |      | A        |

**Module Characteristics**

| Parameter                           | Symbol          | Test Conditions                | Min  | Typ  | Max  | Unit |
|-------------------------------------|-----------------|--------------------------------|------|------|------|------|
| Isolation voltage                   | $V_{isol}$      | $t=1\text{min}, f=50\text{Hz}$ | 2500 |      |      | V    |
| Maximum Junction Temperature        | $T_{jmax}$      |                                |      |      | 175  | °C   |
| Operating Junction Temperature      | $T_{vj\ op}$    |                                | -40  |      | 150  | °C   |
| Storage Temperature                 | $T_{stg}$       |                                | -40  |      | 125  | °C   |
| Thermal Resistance Junction to Case | $R_{\theta JC}$ | per IGBT                       |      |      | 0.28 | K/W  |
| Thermal Resistance Case-to Sink     | $R_{\theta CS}$ | Conductive grease applied      |      | 0.15 |      | K/W  |

## Curve Characteristics

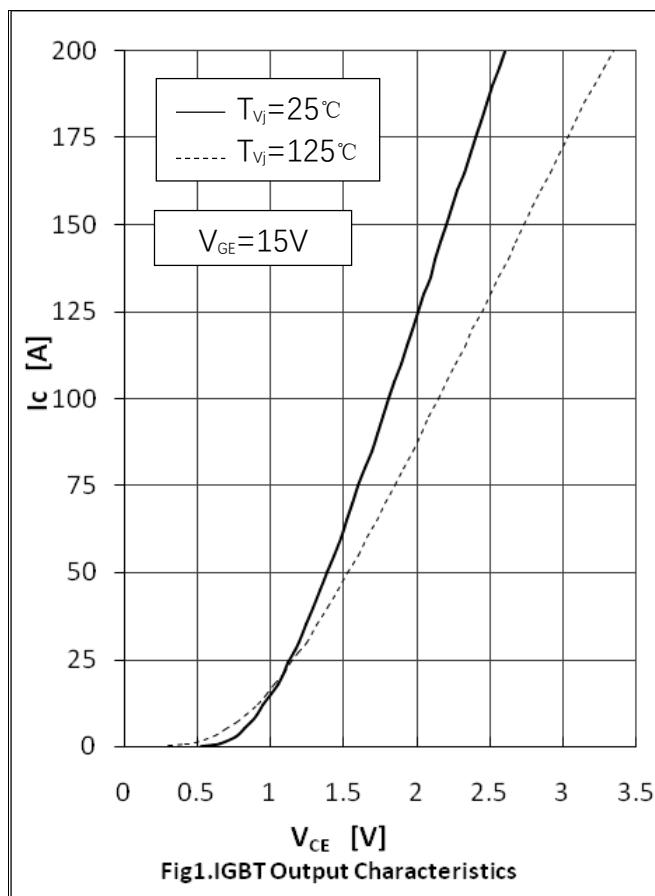



Fig1. IGBT Output Characteristics

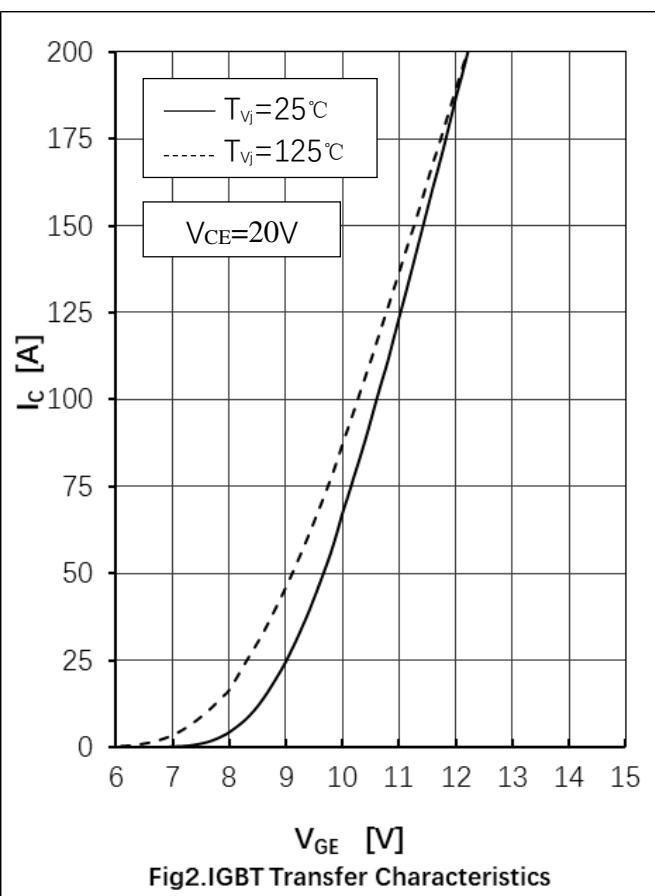



Fig2. IGBT Transfer Characteristics

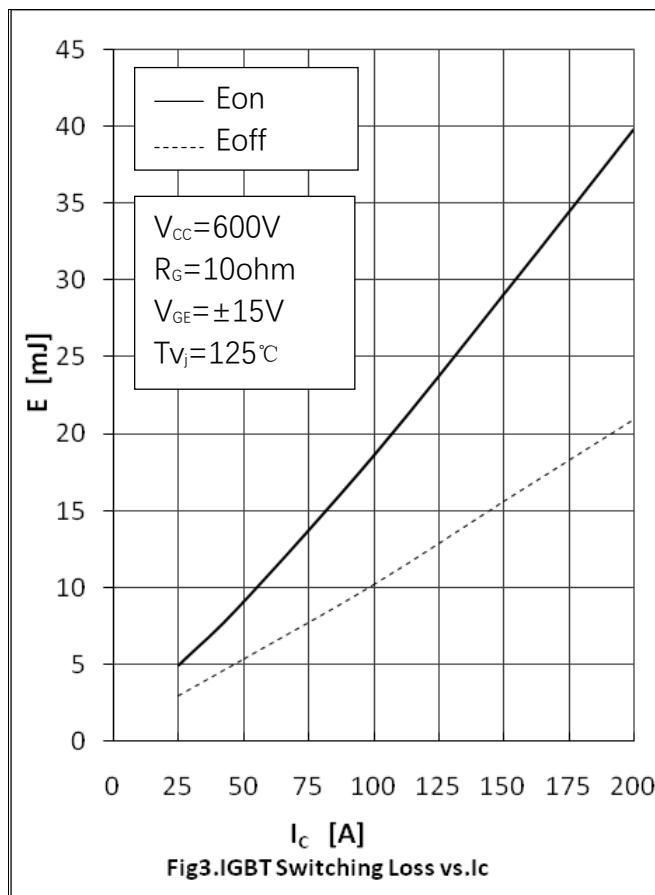



Fig3. IGBT Switching Loss vs.  $I_c$

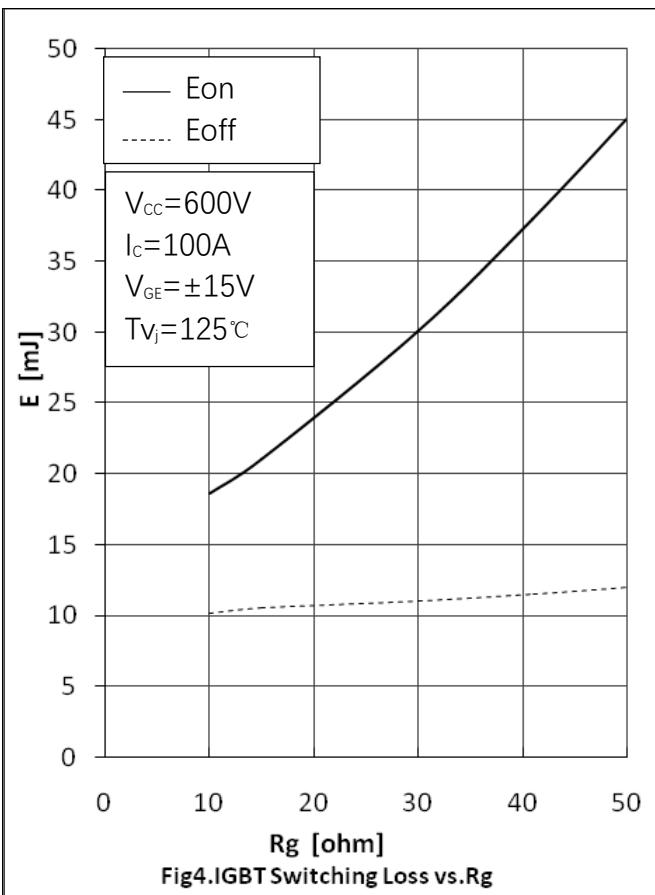



Fig4. IGBT Switching Loss vs.  $R_g$

## Curve Characteristics

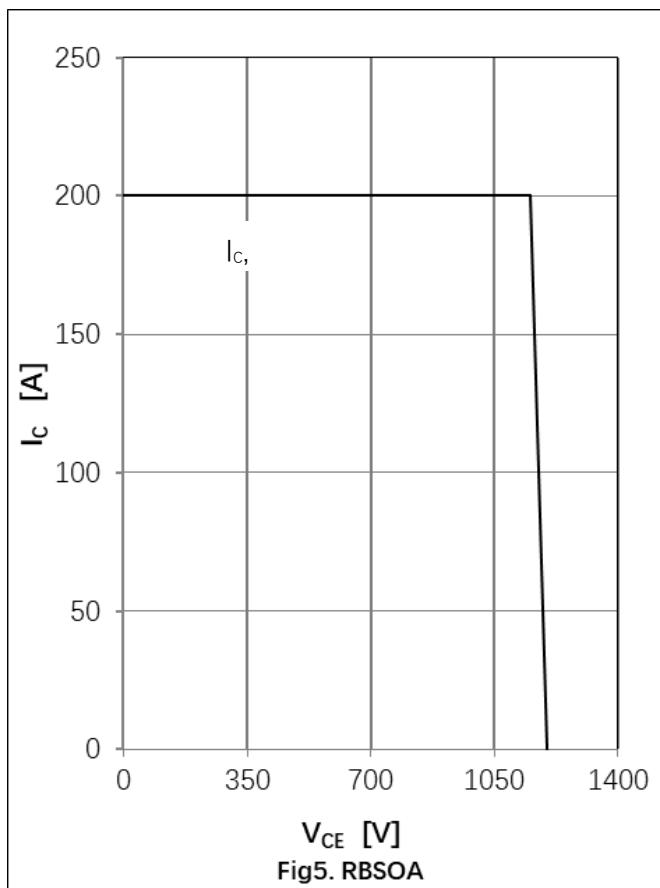



Fig5. RBSOA

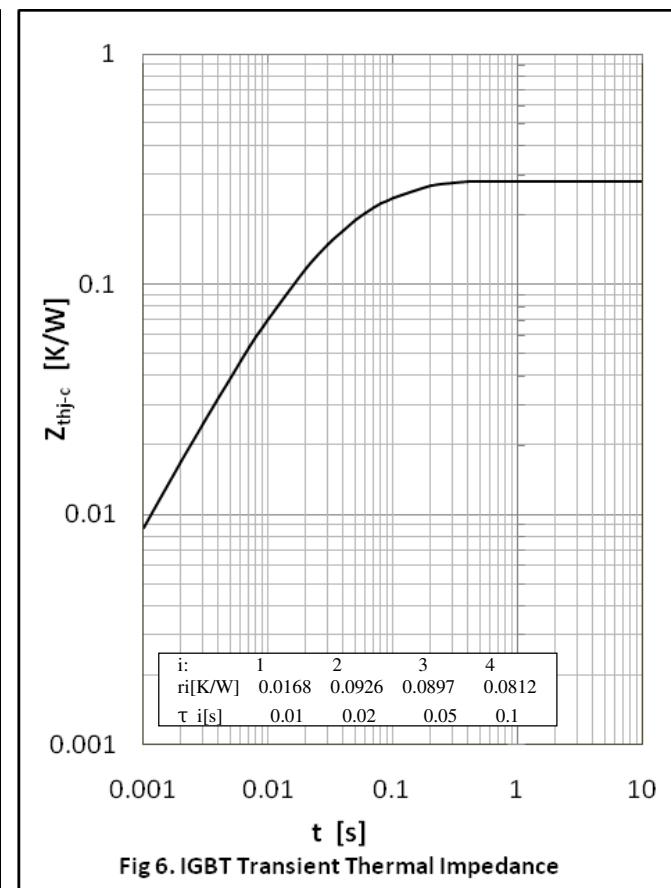
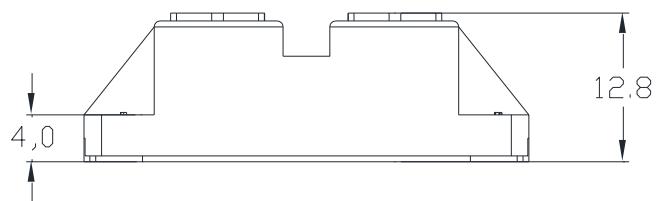
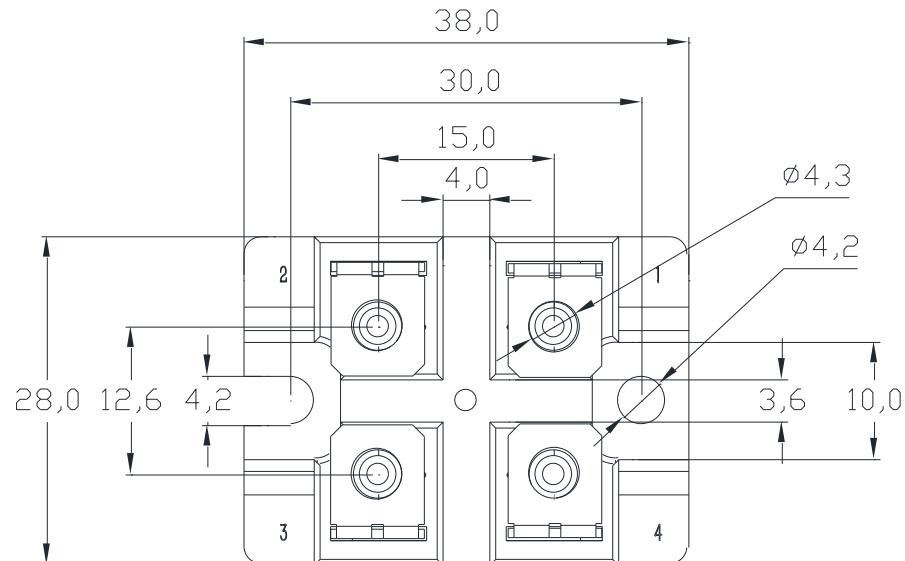





Fig 6. IGBT Transient Thermal Impedance

## Package Dimensions

**GJ**

**Dimensions in mm**



## Ordering Information

| Device         | Packing                      |
|----------------|------------------------------|
| Part Number-BP | Bulk: 25pcs/Box ; 250pcs/Ctn |

### \*\*\*IMPORTANT NOTICE\*\*\*

**Micro Commercial Components Corp.** reserves the right to make changes without further notice to any product herein to make corrections, modifications , enhancements , improvements , or other changes . **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights ,nor the rights of others . The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages. **Micro Commercial Components Corp.** products are sold subject to the general terms and conditions of commercial sale, as published at <https://www.mccsemi.com/Home/TermsAndConditions>.

### \*\*\*LIFE SUPPORT\*\*\*

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

### \*\*\*CUSTOMER AWARENESS\*\*\*

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. **MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources.** MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.