

A RF, Optical, Microelectronics
and Memory Company

US Headquarters
2950 Red Hill Ave, Costa Mesa
California, USA 92626

Office: 714.913.2200
Fax: 714.913.2202

www.vikingtechnology.com

Datasheet for:

MicroSD Card 3.0

PSFUSDxxxxQxxxx

Legal Information

Copyright© 2017 Sanmina Corporation. All rights reserved. The information in this document is proprietary and confidential to Sanmina Corporation. No part of this document may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from Sanmina. Sanmina reserves the right to revise this documentation and to make changes in content from time to time without obligation on the part of Sanmina to provide notification of such revision or change.

Sanmina provides this documentation without warranty, term or condition of any kind, either expressed or implied, including, but not limited to, expressed and implied warranties of merchantability, fitness for a particular purpose, and non-infringement. While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made. In no event will Sanmina be liable for damages arising directly or indirectly from any use of or reliance upon the information contained in this document. Sanmina may make improvements or changes in the product(s) and/or the program(s) described in this documentation at any time.

Sanmina, Viking Technology, Viking Modular Solutions, and the Viking logo are trademarks of Sanmina Corporation. Other company, product or service names mentioned herein may be trademarks or service marks of their respective owners.

Revision History

Date	Revision	Description	Checked by
1/23/17	A	Initial release based on PSFSD3xxxxQxxxx_B (change PN'S and mechanical drawing)	

Ordering Information

Spec	Viking P/N	Grade	NAND Process	Density GB	Temperature
SD 3.0	VPFUSD0512QI7STH	C	TSB 24nm SLC	0.512	-25 to 85°C
SD 3.0	VPFUSD10242QIESTH	C	TSB 24nm SLC	1	-25 to 85°C
SD 3.0	VPFUSD2048QIFSTH	C	TSB 24nm SLC	2	-25 to 85°C
SD 3.0	VPFUSD4096QIQSTH	C	TSB 24nm SLC	4	-25 to 85°C
SD 3.0	VPFUSD8192QIWSTH	C	TSB 24nm SLC	8	-25 to 85°C

Table of Contents

1	INTRODUCTION	8
1.1	Features	8
1.2	General Description	9
1.3	Flash Management	9
1.3.1	Error Correction Code (ECC)	9
1.3.2	Wear Leveling	9
1.3.3	Bad Block Management	10
2	PRODUCT SPECIFICATIONS	11
2.1	Summary	11
2.2	Block Diagram	12
2.3	MicroSD CARD COMPARISON	13
3	ENVIRONMENTAL SPECIFICATIONS	14
3.1	Environmental Conditions	14
3.1.1	Temperature and Humidity	14
3.1.2	Shock and Vibration	14
3.1.3	Electromagnetic Immunity and EMI Compliance	14
3.1.4	Drop	14
3.1.5	Bend	15
3.1.6	Toque	15
3.1.7	Switch	15
3.1.8	Card Socket Insertions	15
3.1.9	Electrostatic Discharge (ESD)	15
3.2	Power Consumption	16
3.3	DC Characteristic	16
3.3.1	Bus Operation Conditions for 3.3V Signaling	16
3.3.2	Bus Signal Line Load	18
3.3.3	Power Up Time of Host	19
3.3.4	Power Up Time of Card	21
3.4	AC Characteristic	22
3.4.1	MicroSD Interface Timing (Default)	22
3.4.2	MicroSD Interface Timing (High-Speed Mode)	25
3.4.3	MicroSD Interface Timing (SDR12, SDR25 and SDR50 Modes)	27

3.4.4 MicroSD Interface Timing (DDR50 Mode)	31
4 INTERFACE	34
4.1 Pad Assignment and Descriptions	34
4.1.1 MicroSD Bus Pin Assignment	34
5 MECHANICAL INFORMATION	36

Table of Tables

Table 2-1: Comparing SD3.0 Standard, SD3.0 SDHC and SD3.0 SDXC	13
Table 2-2: Comparing UHS Speed Grade Symbols	13
Table 3-1: Temperature Specifications	14
Table 3-2: Shock and Vibration Specifications	14
Table 3-3: Drop Specifications	14
Table 3-4: Bend Specifications	15
Table 3-5: Torque Specifications	15
Table 3-6: Switch Specifications	15
Table 3-7: Card Socket Insertions	15
Table 3-8: Electrostatic Discharge (ESD)	15
Table 3-9: Power Consumption	16
Table 3-10: Threshold Level for High Voltage Range	16
Table 3-11: Peak Voltage and Leakage Current	17
Table 3-12: Threshold Level for 1.8V Signaling	17
Table 3-13: Input Leakage Current for 1.8V Signaling	17
Table 3-14: Bus Operation Conditions – Signal Line's Load	18
Table 3-15: Timing Specifications	24
Table 3-16: Card Output Timing (High Speed Card)	26
Table 3-17: Clock Signal Timing	27
Table 3-18: SDR50 and SDR104 Card Input Timing	28
Table 3-19: Output Timing of Fixed Data Window (SDR12, SDR25, SDR50)	29
Table 3-20: Output Timing of Variable Window (SDR104)	30
Table 3-21: Clock Signal Timing	31
Table 3-22: Bus Timings – Parameters Values (DDR50 Mode)	33
Table 4-1: MicroSD Bus Pin Assignment	34
Table 4-2: Registers	35

Table of Figures

Figure 2-1: High-Level Block Diagram	12
Figure 3-1: Bus Circuitry Diagram	18
Figure 3-2: Power Up Time of Host	19
Figure 3-3: Power Up Time of Card	21
Figure 3-4: Voltage Levels	22
Figure 3-5: Card Input Timing (Default Speed Card)	22
Figure 3-6: Card Output Timing (Default Speed Card)	23
Figure 3-7: Card Input Timing (High Speed Card)	25
Figure 3-8: Card Output Timing (High Speed Card)	25
Figure 3-9: Clock Signal Timing (Input)	27
Figure 3-10: SDR50 and SDR104 Card Input Timing	28
Figure 3-11: Clock Signal Timing (Output Timing of Fixed Data)	29
Figure 3-12: Output Timing of Variable Window (SDR104)	30
Figure 3-13: Clock Signal Timing	31
Figure 3-14: Timing Diagram DAT Inputs/Outputs Referenced to CLK in DDR50 Mode	32
Figure 4-1: MicroSD Pin Assignment 9Back View of the Card)	34
Figure 5-1: MicroSD Case Dimensions	36

1 Introduction

Viking SSD's offer the highest flash storage reliability and performance as well as support for many functional features.

1.1 Features

- Flash Type
 - Toshiba 24nm SLC
 - Toshiba 32nm SLC
 - Spansion 32nm SLC
- Bus Speed Mode
 - UHS-I
 - Non-UHS
- Speed Class
 - Class 2/6/10
- Power Consumption^{Note}
 - Power Up Current < 250uA
 - Standby Current < 1000uA
 - Read Current < 400mA
 - Write Current < 400mA
- CPRM (Content Protection for Recordable Media)
- Advanced Flash Management
 - Static and Dynamic Wear Leveling
 - Bad Block Management
- Write Protect with mechanical switch
- Supply Voltage 2.7 ~ 3.6V
- Temperature Range
 - Operation: -25°C ~ 85°C
 - Storage: -25°C ~ 85°C
- RoHS compliant
- EMI compliant

NOTE: Please see Chapter on Power Consumption for details

- Performance Overview

Capacity	Class	UHS-I	Flash			TestMetrix Test Test 500MB	
			Density	Process	Bit-per-cell	Read (MB/s)	Write (MB/s)
0.512GB	CL6	Non-UHS	.512Gb*1	24nm	SLC	23	17
1GB	CL6	Non-UHS	.512Gb*2	24nm	SLC	23	22
2GB	CL6	Non-UHS	.512Gb*4	24nm	SLC	23	22
4GB	CL10	UHS-I (Grade 1)	4Gb*1	24nm	SLC	35	35
8GB	CL10	UHS-I (Grade 1)	4Gb*2	24nm	SLC	35	35

1.2 General Description

The Micro Secure Digital (MicroSD) card version 3.0 is fully compliant with the standards released by the SD Card Association. The Command List supports [Part 1 Physical Layer Specification Ver3.01 Final] definitions. Card capacities of non-secure area and secure area support [Part 3 Security Specification Ver3.0 Final]

The MicroSD 3.0 card has a 9-pin interface, designed to operate at a maximum frequency of 208MHz. It can alternate communication protocol between the SD mode and SPI mode. It performs data error detection and correction with very low power consumption. The Card capacity could be more than 64GB and up to 2TB in the future with ex-FAT file system, which is called SDXC (Extended Capacity SD Memory Card). Secure Digital 3.0 cards are one of the most popular cards today due to its high performance, good reliability and wide compatibility.

1.3 Flash Management

1.3.1 Error Correction Code (ECC)

Flash memory cells will deteriorate with use, which might generate random bit errors in the stored data. Thus, Viking MicroSD cards apply the BCH ECC Algorithm, which can detect and correct errors occur during Read process, ensure data been read correctly, as well as protect data from corruption.

1.3.2 Wear Leveling

NAND Flash devices can only undergo a limited number of program/erase cycles, and in most cases, the flash media are not used evenly. If some area get updated more frequently than others, the lifetime of the device would be reduced significantly. Thus, Wear Leveling technique is applied to extend the lifespan of NAND Flash by evenly distributing write and erase cycles across the media.

Viking provides advanced Wear Leveling algorithm, which can efficiently spread out the flash usage through the whole flash media area. Moreover, by implementing both dynamic and static Wear Leveling algorithms, the life expectancy of the NAND Flash is greatly improved.

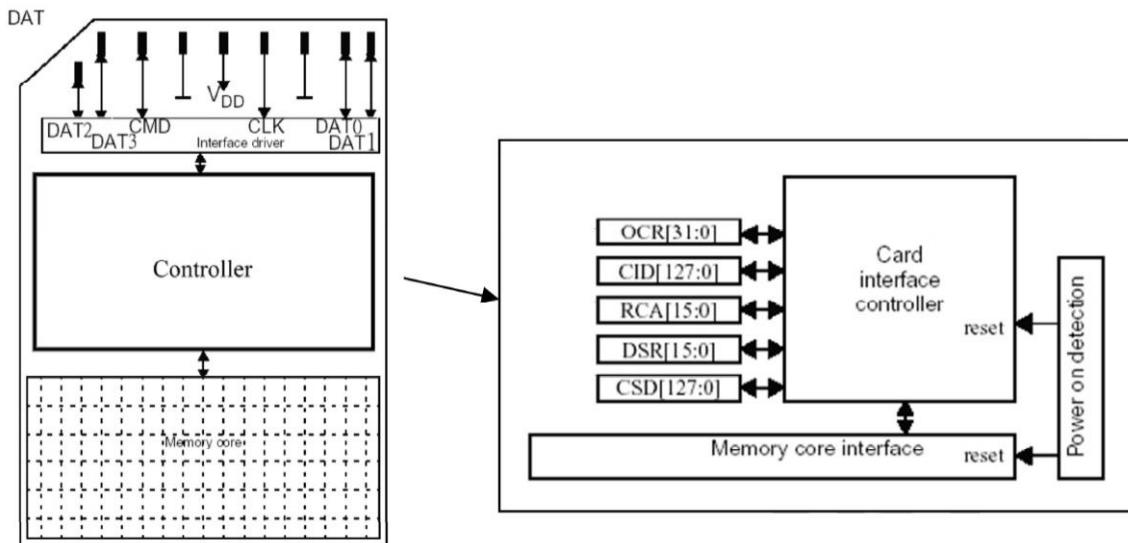
1.3.3 Bad Block Management

Bad blocks are blocks that include one or more invalid bits, and their reliability is not guaranteed. Blocks that are identified and marked as bad by the manufacturer are referred to as "Initial Bad Blocks". Bad blocks that are developed during the lifespan of the flash are named "Later Bad Blocks". Viking implements an efficient bad block management algorithm to detect the factory-produced bad blocks and manages any bad blocks that appear with use. This practice further prevents data being stored into bad blocks and improves the data reliability.

2 PRODUCT SPECIFICATIONS

2.1 Summary

- Support MicroSD system specification version 3.0
- Card capacity of non-secure area and secure area support [Part 3 Security Specification Ver3.0 Final] Specifications
- Support MicroSD SPI mode
- Designed for read-only and read/write cards
- Bus Speed Mode (use 4 parallel data lines)
 - Non-UHS Mode
 - Default speed mode: 3.3V signaling, frequency up to 25MHz, up to 12.5 MB/sec
 - High speed mode: 3.3V signaling, frequency up to 50MHz, up to 25 MB/sec
 - UHS Mode
 - SDR12: SDR up to 25MHz, 1.8V signaling
 - SDR25: SDR up to 50MHz, 1.8V signaling
 - SDR50: 1.8V signaling, frequency up to 100MHz, up to 50 MB/sec
 - SDR104: 1.8V signaling, frequency up to 208MHz, up to 104MB/sec
 - DDR50: 1.8V signaling, frequency up to 50MHz, sampled on both clock edges, up to 50MB/sec


NOTES:

1. Timing in 1.8V signaling is different from that of 3.3V signaling.
2. To properly run the UHS mode, please ensure the device supports UHS-I mode.

- The command list supports [Part 1 Physical Layer Specification Ver3.1 Final] definitions
- Copyrights Protection Mechanism
 - Compliant with the highest security of DPRM standard
- Support CPRM (Content Protection for Recordable Media) of MicroSD Card
- Card removal during read operation will never harm the content
- Password Protection of cards (optional)
- Write Protect feature using mechanical switch
- Built-in write protection features (permanent and temporary)
- Electrostatic Discharge (ESD)
 - ESD protection in contact pads (contact discharge)
 - ESD protection in non-contact pads (air discharge)
- Operation voltage range: 2.7 ~ 3.6V
- Support Dynamic and Static Wear Leveling

2.2 Block Diagram

Figure 2-1: High-Level Block Diagram

2.3 MicroSD CARD COMPARISON

Table 2-1: Comparing SD3.0 Standard, SD3.0 SDHC and SD3.0 SDXC

	SD3.0 SDSC (Backward compatible to 2.0 host)	SD3.0 SDHC (Backward compatible to 2.0 host)	SD3.0 SDXC
File System	FAT 12/16	FAT32	exFAT
Addressing Mode	Byte (1 byte unit)	Block (512 byte unit)	Block (512 byte unit)
HCS/CCS bits of ACMD41	Support	Support	Support
CMD8 (SEND_IF_COND)	Support	Support	Support
CMD16 (SET_BLOCKLEN)	Support	Support (Only CMD42)	Support (Only CMD42)
Partial Read	Support	Not Support	Not Support
Lock/Unlock Function	Mandatory	Mandatory	Mandatory
Write Protect Groups	Optional	Not Support	Not Support
Supply Voltage 2.7v – 3.6v (for operation)	Support	Support	Support
Total Bus Capacitance for each signal line	40pF	40pF	40pF
CSD Version (CSD_STRUCTURE Value)	1.0 (0x0)	2.0 (0x1)	2.0 (0x1)
Speed Class	Optional	Mandatory (Class 2 / 4 / 6 / 10)	Mandatory (Class 2 / 4 / 6 / 10)

Table 2-2: Comparing UHS Speed Grade Symbols

	U1 (UHS Speed Grade 1)	U3 (UHS Speed Grade 3)
Operable Under	*UHS-I Bus I/F, UHS-II Bus I/F	
MicroSD Memory Card	SDHC UHS-I and UHS-II, SDXC UHS-I and UHS-II	
Performance	10 MB/s minimum write speed	30 MB/s minimum write speed
Applications	Full higher potential of recording real-time broadcasts and capturing large-size HD videos.	Capable of recording 4K2K video.

*UHS (Ultra High Speed), , defines bus-interface speeds up to 312 Megabytes per second for greater device performance. It is available on SDXC and SDHC memory cards and devices.

3 ENVIRONMENTAL SPECIFICATIONS

3.1 Environmental Conditions

3.1.1 Temperature and Humidity

Table 3-1: Temperature Specifications

Conditions	Operating	Shipping	Storage
Temperature- Ambient	-25 to 85°C	-40 to 85°C	-40 to 85°C
Humidity (non-condensing)	95% under 25C	93% under 40C	93% under 40C

3.1.2 Shock and Vibration

Table 3-2: Shock and Vibration Specifications

Stimulus	Description
Shock	1500G, 0.5ms
Vibration	20 – 80 Hz/1.52mm, 80 – 2000 Hz/20G, (X,Y,Z axis / 30 min for each)

3.1.1 Electromagnetic Immunity and EMI Compliance

- FCC: CISPR22
- CE: EN55022
- BSMI 13438

3.1.2 Drop

Table 3-3: Drop Specifications

	Height of Drop	Number of Drop
MicroSD card	150cm free fall	Direction: 6 face; 1 time/face

Result: No any abnormality is detected when power on

3.1.3 Bend

Table 3-4: Bend Specifications

	Force	Action
MicroSD card	$\geq 10N$	Hold for 1min; total 5 times.

Result: No any abnormality is detected when power on

3.1.4 Toque

Table 3-5: Torque Specifications

	Force	Action
MicroSD card	0.15N·m or ± 2.5 deg	Hold 30 second/direction, Total 5 cycles

Result: No any abnormality is detected when power on

3.1.5 Switch

Table 3-6: Switch Specifications

	Force	Number of Switch Cycle
MicroSD card	0.4N·m~5N·m	1000 cycles

Result: No any abnormality is detected when power on

3.1.6 Card Socket Insertions

Table 3-7: Card Socket Insertions

	Number of Mating Cycles	Result
MicroSD card	10000 cycles	Pass

3.1.7 Electrostatic Discharge (ESD)

Table 3-8: Electrostatic Discharge (ESD)

	Condition	Result
	Contact: $\pm 4KV$; 5 times/Pin	Pass
MicroSD card	Air: $\pm 15KV$; 5 times/Position	Pass

3.2 Power Consumption

The table below is the power consumption of MicroSD card with different bus speed modes.

Table 3-9: Power Consumption

Bus Speed Mode	Max. Power Up Current (uA)	Max. Standby Current (uA)	Max. Read Current (mA)	Max. Write Current (mA)
Default Speed Mode	250	1000	150 @ 3.6V	150 @ 3.6V
High Speed Mode	250	1000	200 @ 3.6V	200 @ 3.6V

NOTES:

- 1) Power consumptions are measured at room temperature (25C). Standby current might rise to 1600 under 85C.
- 2) Power consumption of Max. Standby Current is for MicroSD cards under and including 64GB only. For 128GB and 256GB, the power consumption is to be determined.

3.3 DC Characteristic

3.3.1 Bus Operation Conditions for 3.3V Signaling

Table 3-10: Threshold Level for High Voltage Range

Parameter	Symbol	Min.	Max	Unit	Condition
Supply Voltage	VDD	2.7	3.6	V	
Output High Voltage	V _{OH}	0.75*VDD		V	I _{OH} =-2mA VDD Min
Output Low Voltage	V _{OL}		0.125*VDD	V	I _{OL} =2mA VDD Min
Input High Voltage	V _{IH}	0.625*VDD	VDD+0.3	V	
Input Low Voltage	V _{IL}	VSS-0.3	0.25*VDD	V	
Power Up Time			250	ms	From 0V to VDD min

Table 3-11: Peak Voltage and Leakage Current

Parameter	Symbol	Min	Max.	Unit	Remarks
Peak voltage on all lines		-0.3	VDD+0.3	V	
All Inputs					
Input Leakage Current		-10	10	uA	
All Outputs					
Output Leakage Current		-10	10	uA	

Table 3-12: Threshold Level for 1.8V Signaling

Parameter	Symbol	Min.	Max	Unit	Condition
Supply Voltage	V _{DD}	2.7	3.6	V	
Regulator Voltage	V _{DDIO}	1.7	1.95	V	Generated by V _{DD}
Output High Voltage	V _{OH}	1.4	-	V	I _{OH} =-2mA
Output Low Voltage	V _{OL}	-	0.45	V	I _{OL} =2mA
Input High Voltage	V _{IH}	1.27	2	V	
Input Low Voltage	V _{IL}	Vss-0.3	0.58	V	

Table 3-13: Input Leakage Current for 1.8V Signaling

Parameter	Symbol	Min	Max.	Unit	Remarks
Input Leakage Current		-2	2	uA	DAT3 pull-up is disconnected

3.3.2 Bus Signal Line Load

Figure 3-1: Bus Circuitry Diagram

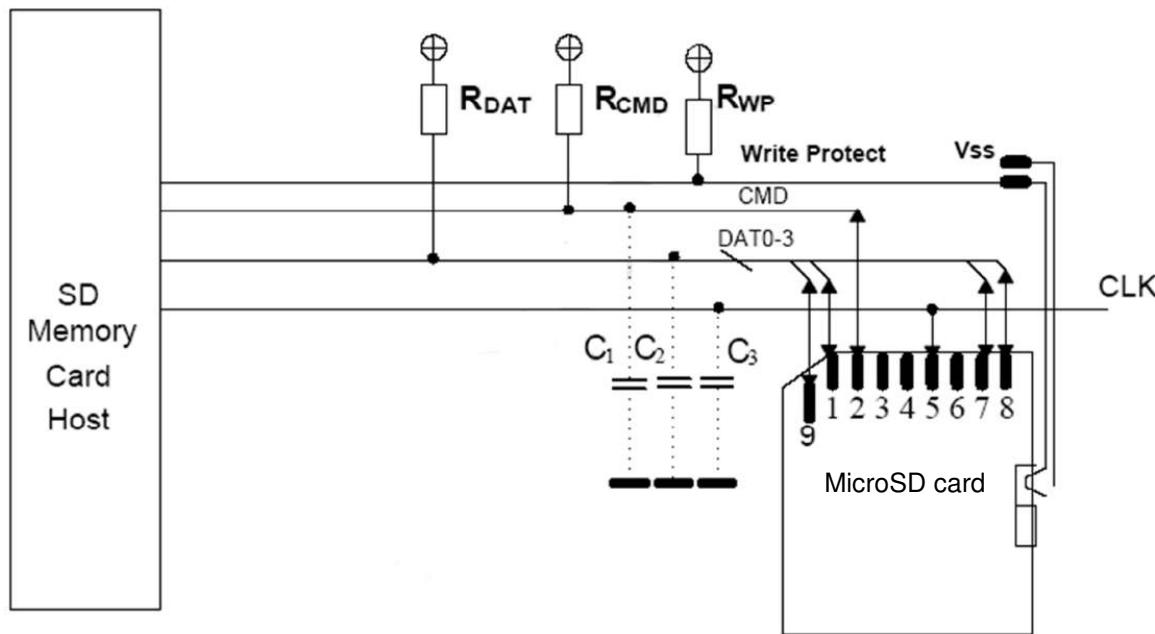
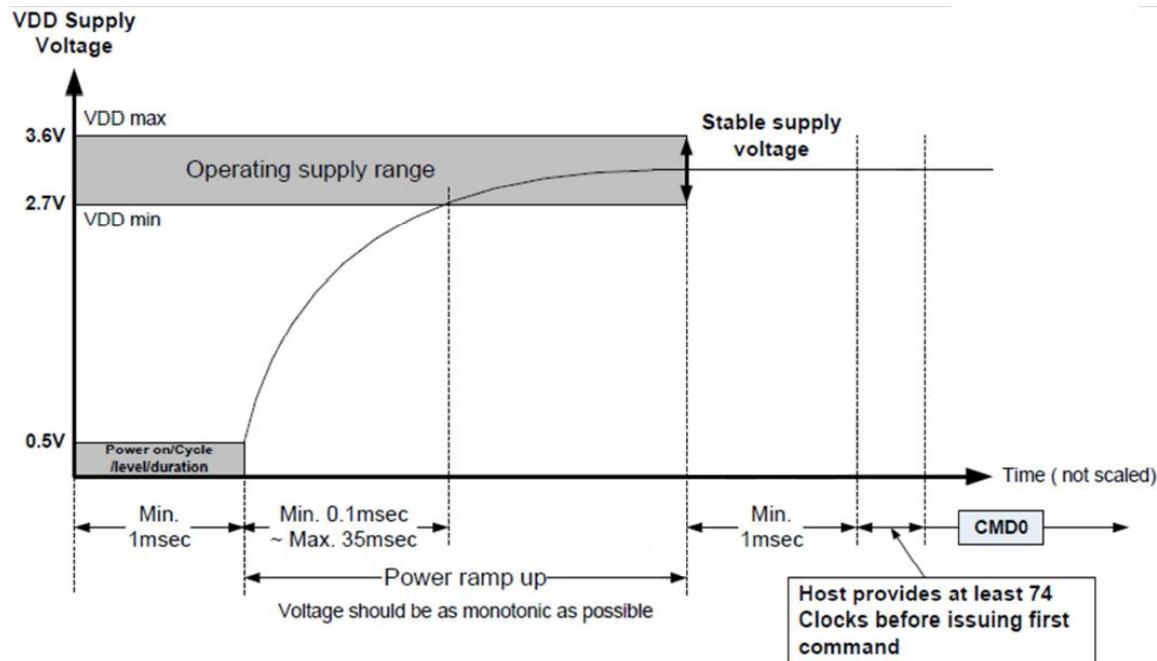


Table 3-14: Bus Operation Conditions – Signal Line's Load

Parameter	Symbol	Min	Max	Unit	Remark
Pull-up resistance	R_{CMD} R_{DAT}	10	100	k Ω	To prevent bus floating
Total bus capacitance for each signal line	C_L		40	pF	1 card $C_{HOST} + C_{BUS}$ shall not exceed 30 pF
Card Capacitance for each signal pin	C_{CARD}		10	pF	
Maximum signal line inductance			16	nH	
Pull-up resistance inside card (pin1)	R_{DAT3}	10	90	k Ω	May be used for card detection
Capacity Connected to Power Line	C_C		5	uF	To prevent inrush current


Notes:

Total Bus Capacitance = $C_{HOST} + C_{BUS} + N C_{CARD}$

3.3.3 Power Up Time of Host

Host needs to keep power line level less than 0.5V and more than 1ms before power ramp up.

Figure 3-2: Power Up Time of Host

Power On or Power Cycle

Followings are requirements for Power on and Power cycle to assure a reliable MicroSD Card hard reset.

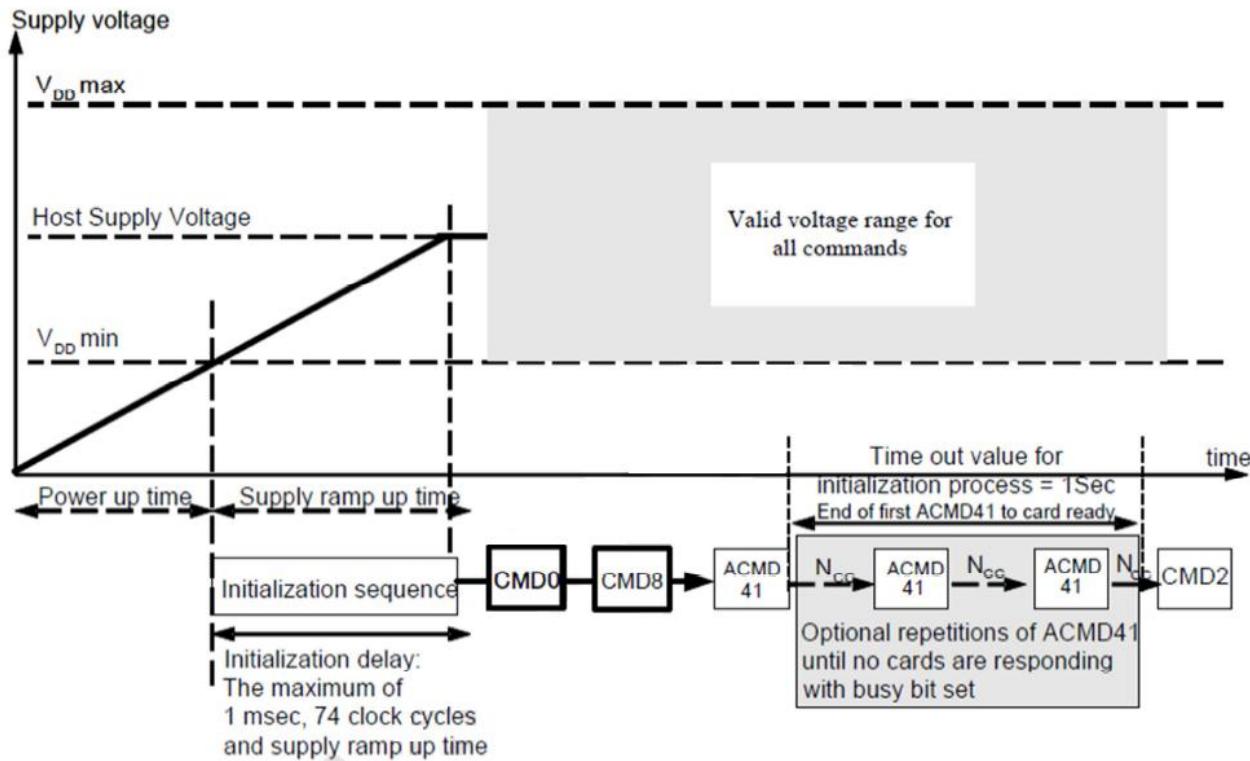
1. Voltage level shall be below 0.5V
2. Duration shall be at least 1ms.

Power Supply Ramp Up

The power ramp up time is defined from 0.5V threshold level up to the operating supply voltage which is stable between VDD (min.) and VDD (max.) and host can supply SDCLK.

Followings are recommendations of Power ramp up:

1. Voltage of power ramp up should be monotonic as much as possible.
2. The minimum ramp up time should be 0.1ms.
3. The maximum ramp up time should be 35ms for 2.7-3.6V power supply.
4. Host shall wait until VDD is stable.
5. After 1ms VDD stable time, host provides at least 74 clocks before issuing the first command.


Power Down and Power Cycle

1. When the host shuts down the power, the card VDD shall be lowered to less than 0.5Volt for a minimum period of 1ms. During power down, DAT, CMD, and CLK should be disconnected or driven to logical 0 by the host to avoid a situation that the operating current is drawn through the signal lines.
2. If the host needs to change the operating voltage, a power cycle is required. Power cycle means the power is turned off and supplied again. Power cycle is also needed for accessing cards that are already in Inactive State. To create a power cycle the host shall follow the power down description before power up the card (i.e. the card VDD shall be once lowered to less than 0.5Volt for a minimum period of 1ms).

3.3.4 Power Up Time of Card

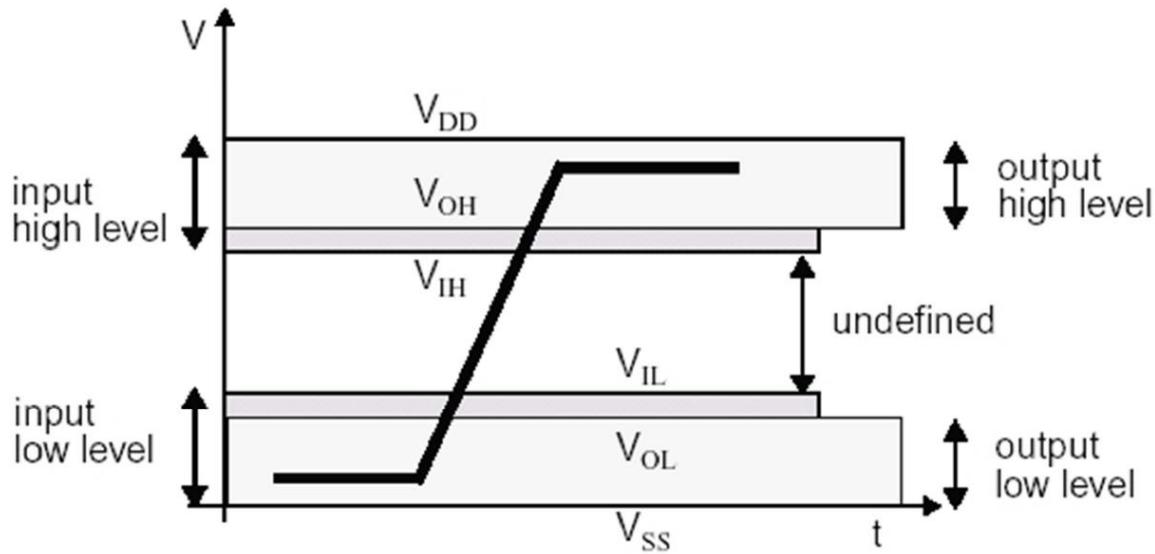

A device shall be ready to accept the first command within 1ms from detecting VDD min. Device may use up to 74 clocks for preparation before receiving the first command.

Figure 3-3: Power Up Time of Card

3.4 AC Characteristic

Figure 3-4: Voltage Levels

3.4.1 MicroSD Interface Timing (Default)

Figure 3-5: Card Input Timing (Default Speed Card)

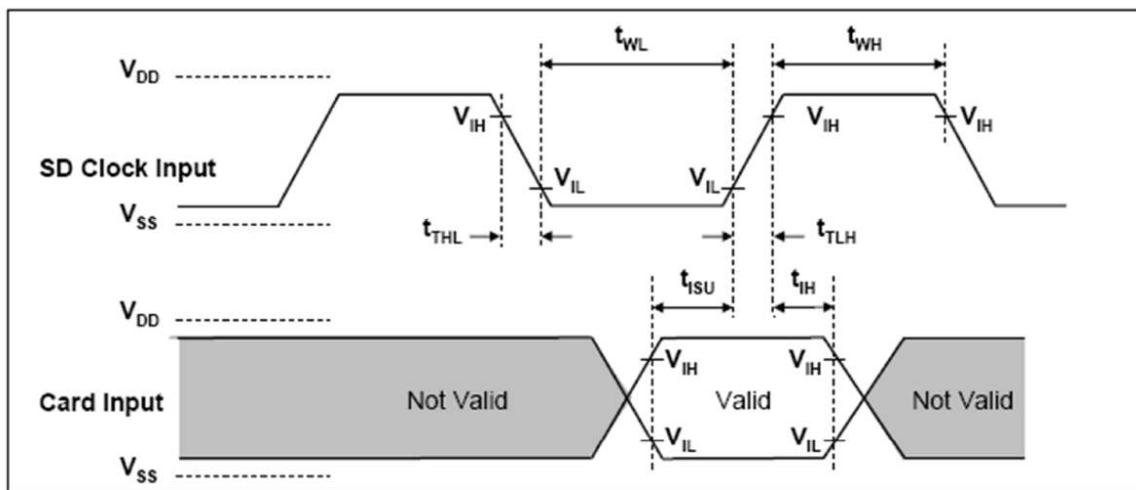
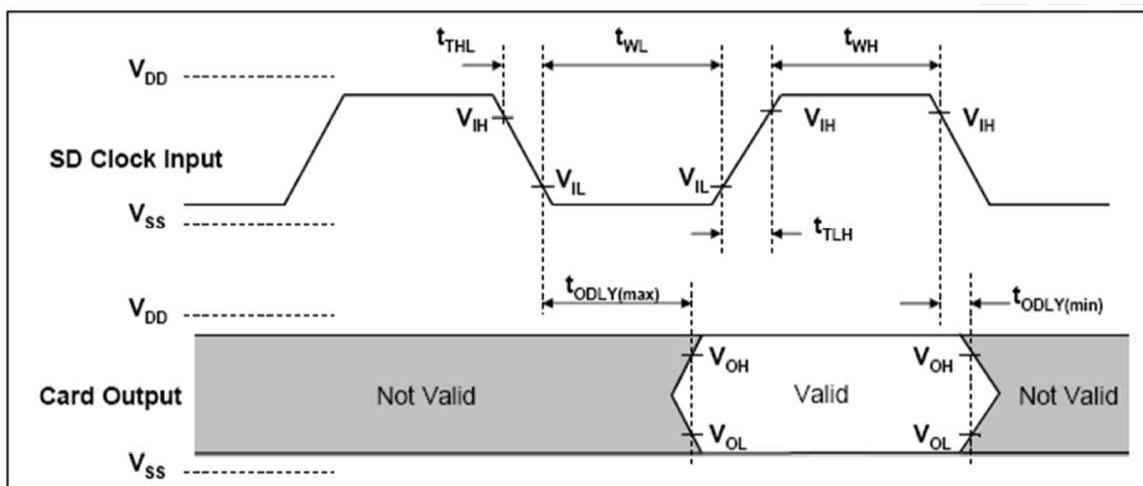



Figure 3-6: Card Output Timing (Default Speed Card)

Table 3-15: Timing Specifications

Parameter	Symbol	Min	Max	Unit	Remark
Clock CLK (All values are referred to min(VIH) and max(VIL))					
Clock frequency Data Transfer Mode	f_{PP}	0	25	MHz	$C_{card} \leq 10 \text{ pF}$ (1 card)
Clock frequency Identification Mode	f_{OD}	0(1)/100	400	kHz	$C_{card} \leq 10 \text{ pF}$ (1 card)
Clock low time	t_{WL}	10		ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Clock high time	t_{WH}	10		ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Clock rise time	t_{TLH}		10	ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Clock fall time	t_{THL}		10	ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Inputs CMD, DAT (referenced to CLK)					
Input set-up time	t_{ISU}	5		ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Input hold time	t_{IH}	5		ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Outputs CMD, DAT (referenced to CLK)					
Output Delay time during Data Transfer Mode	t_{ODLY}	0	14	ns	$C_{card} \leq 40 \text{ pF}$ (1 card)
Output Delay time during Identification Mode	t_{ODLY}	0	50	ns	$C_{card} \leq 40 \text{ pF}$ (1 card)

Notes:

- 1) 0Hz means to stop the clock. The given minimum frequency range is for cases where continuous clock is required.

3.4.2 MicroSD Interface Timing (High-Speed Mode)

Figure 3-7: Card Input Timing (High Speed Card)

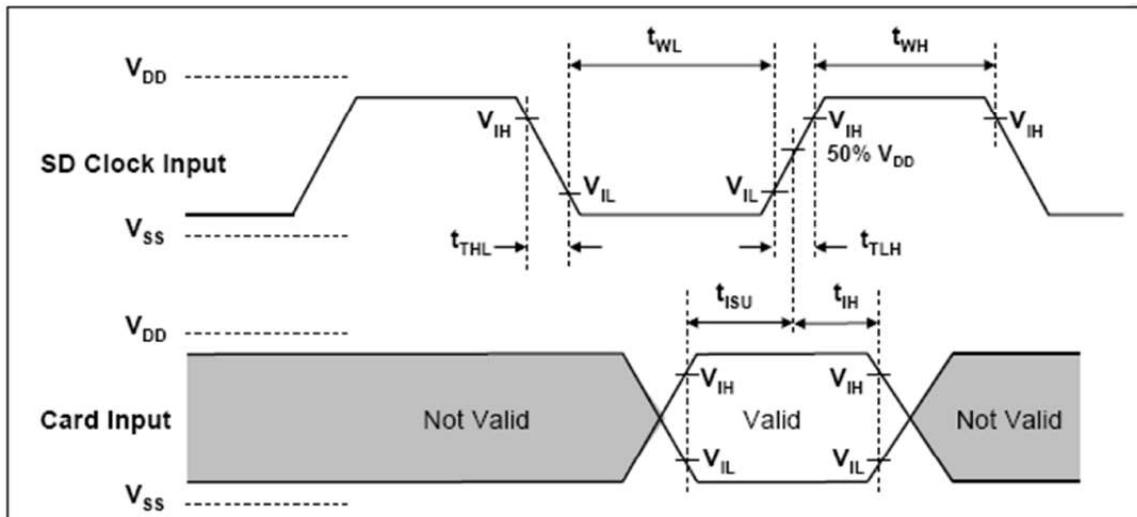
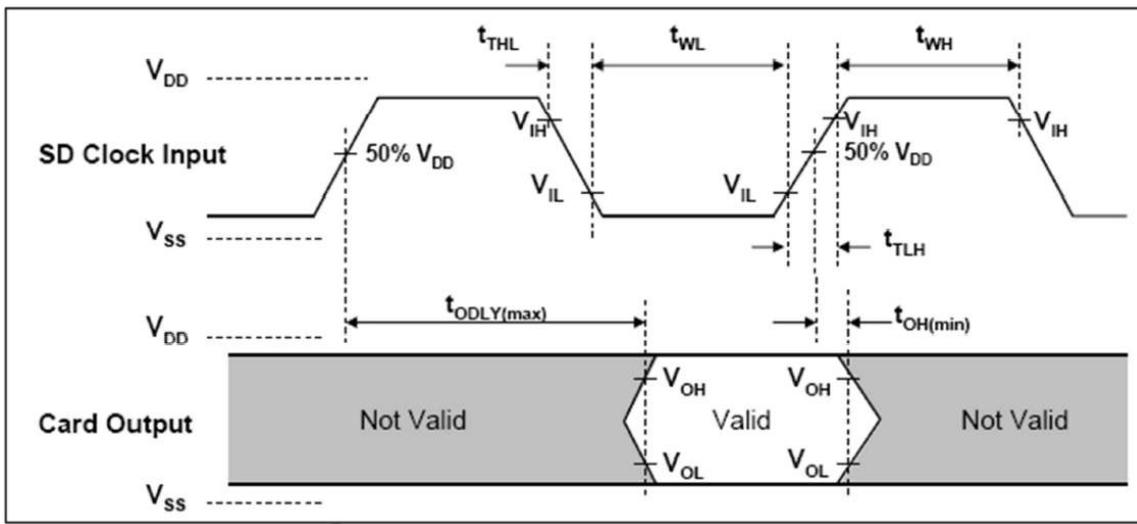
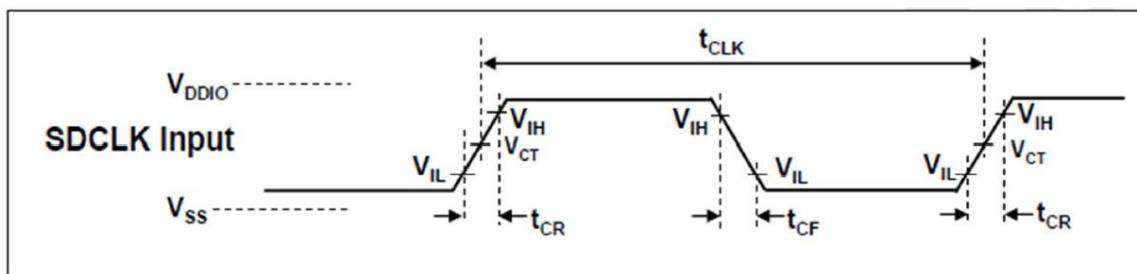



Figure 3-8: Card Output Timing (High Speed Card)

Table 3-16: Card Output Timing (High Speed Card)


Parameter	Symbol	Min	Max	Unit	Remark
Clock CLK (All values are referred to min(VIH) and max(VIL))					
Clock frequency Data Transfer Mode	f_{PP}	0	50	MHz	$C_{card} \leq 10 \text{ pF}$ (1 card)
Clock low time	t_{WL}	7		ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Clock high time	t_{WH}	7		ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Clock rise time	t_{TLH}		3	ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Clock fall time	t_{THL}		3	ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Inputs CMD, DAT (referenced to CLK)					
Input set-up time	t_{ISU}	6		ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Input hold time	t_{IH}	2		ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Outputs CMD, DAT (referenced to CLK)					
Output Delay time during Data Transfer Mode	t_{ODLY}	0	14	ns	$C_{card} \leq 40 \text{ pF}$ (1 card)
Output hold time	t_{OH}	2.5		ns	$C_{card} \leq 15 \text{ pF}$ (1 card)
Total System capacitance of each	C_L	0	40	ns	$C_{card} \leq 15 \text{ pF}$ (1 card)

Notes:

- 1) In order to satisfy severe timing, the host shall drive only one card.

3.4.3 MicroSD Interface Timing (SDR12, SDR25 and SDR50 Modes)

Figure 3-9: Clock Signal Timing (Input)

Table 3-17: Clock Signal Timing

Symbol	Min	Max	Unit	Remark
t_{CLK}	4.8	-	ns	208MHz (Max.), Between rising edge, $V_{CT} = 0.975V$
				$t_{CR}, t_{CF} < 0.96ns$ (max.) at 208MHz, $C_{CARD}=10pF$
t_{CR}, t_{CF}	-	0.2* t_{CLK}	ns	$t_{CR}, t_{CF} < 2.00ns$ (max.) at 100MHz, $C_{CARD}=10pF$ The absolute maximum value of t_{CR}, t_{CF} is 10ns regardless of clock frequency
Clock Duty	30	70	%	

Figure 3-10: SDR50 and SDR104 Card Input Timing

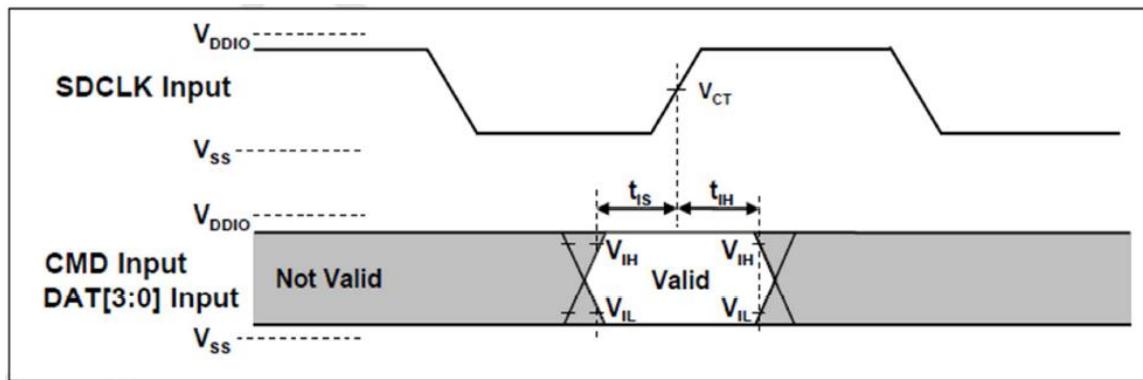
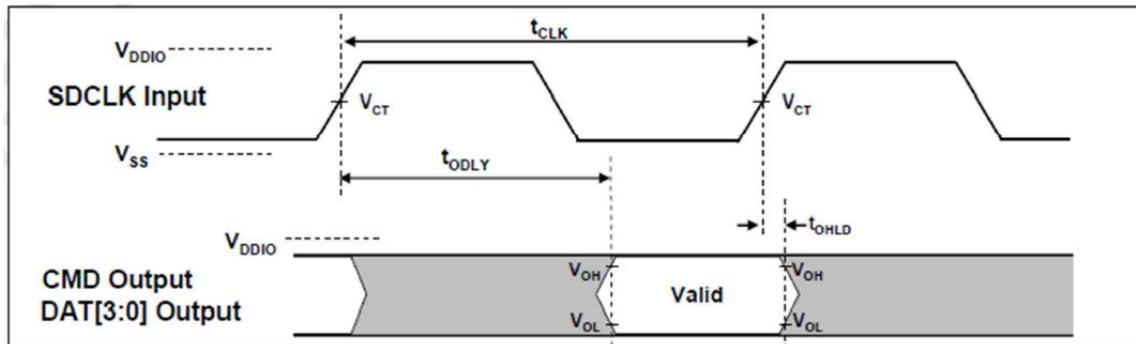



Table 3-18: SDR50 and SDR104 Card Input Timing

Symbol	Min	Max	Unit	SDR104 Mode
t_{IS}	1.4	-	ns	$C_{CARD} = 10\text{pF}$, $V_{CT} = 0.975\text{V}$
t_{IH}	0.8	1	ns	$C_{CARD} = 5\text{pF}$, $V_{CT} = 0.975\text{V}$
Symbol	Min	Max	Unit	SDR104 Mode
t_{IS}	3.00	-	ns	$C_{CARD} = 10\text{pF}$, $V_{CT} = 0.975\text{V}$
t_{IH}	0.8 ¹	-	ns	$C_{CARD} = 5\text{pF}$, $V_{CT} = 0.975\text{V}$

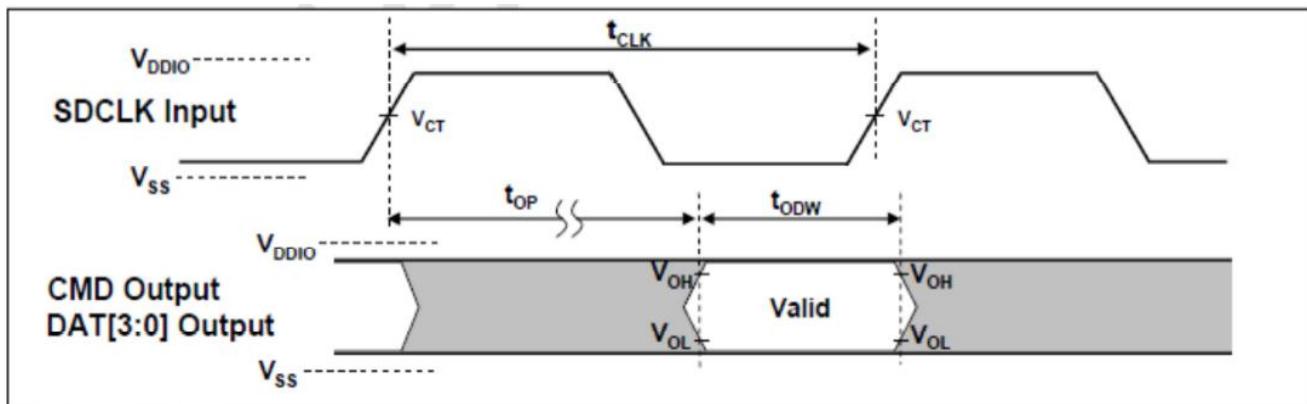

Figure 3-11: Clock Signal Timing (Output Timing of Fixed Data)

Table 3-19: Output Timing of Fixed Data Window (SDR12, SDR25, SDR50)

Symbol	Min	Max	Unit	Remark
t_{ODLY}	-	7.5	ns	$t_{CLK} \geq 10.0\text{ns}$, $C_L = 30\text{pF}$, using driver Type B, for SDR50
t_{ODLY}	-	14	ns	$t_{CLK} \geq 20.0\text{ns}$, $C_L = 40\text{pF}$, using driver Type B, for SDR25 and SDR12
T_{OH}	1.5	-	ns	Hold time at the t_{ODLY} (min.), $C_L = 15\text{pF}$

Figure 3-12: Output Timing of Variable Window (SDR104)

Table 3-20: Output Timing of Variable Window (SDR104)

Symbol	Min	Max	Unit	Remark
t_{OP}	0	2	UI	Card Output Phase
Δt_{OP}	-350	+1550	ps	Delay variable due to temperature change after tuning
t_{ODW}	0.6	-	UI	$t_{ODW} = 2.88\text{ns}$ at 208MHz

3.4.4 MicroSD Interface Timing (DDR50 Mode)

Figure 3-13: Clock Signal Timing

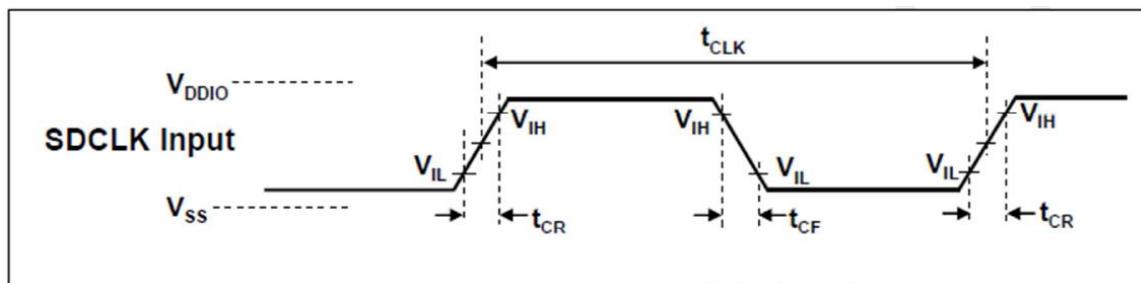
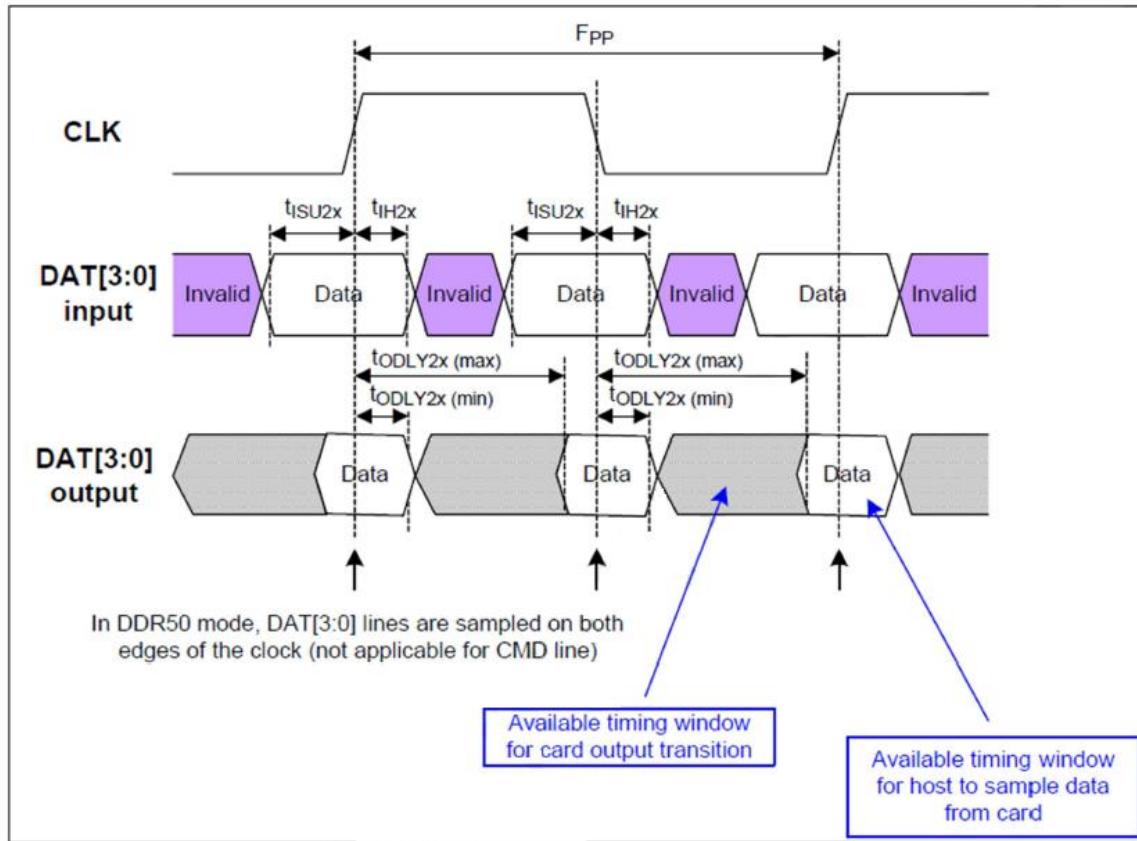



Table 3-21: Clock Signal Timing

Symbol	Min	Max	Unit	Remark
t_{CLK}	20	-	ns	50MHz (Max.), Between rising edge
t_{CR}, t_{CF}	-	$0.2 * t_{CLK}$	ns	$t_{CR}, t_{CF} < 4.00\text{ns}$ (max.) at 50MHz, $C_{CARD}=10\text{pF}$
Clock Duty	45	55	%	

Figure 3-14: Timing Diagram DAT Inputs/Outputs Referenced to CLK in DDR50 Mode

Table 3-22: Bus Timings – Parameters Values (DDR50 Mode)

Parameter	Symbol	Min	Max	Unit	Remark
Inputs CMD (referenced to CLK)					
Input set-up time	t_{ISU}	3	-	ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Input hold time	t_{IH}	0.8	-	ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Outputs CMD (referenced to CLK)					
Output Delay time during Data Transfer Mode	t_{ODLY}	0	13.7	ns	$C_L \leq 30 \text{ pF}$ (1 card)
Output hold time	t_{OH}	1.5		ns	$C_L \geq 15 \text{ pF}$ (1 card)
Inputs DAT (referenced to CLK)					
Input set-up time	t_{ISU2x}	3	-	ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Input hold time	t_{IH2x}	0.8	-	ns	$C_{card} \leq 10 \text{ pF}$ (1 card)
Outputs DAT (referenced to CLK)					
Output Delay time during Data Transfer Mode	t_{ODLY2x}	0	13.7	ns	$C_L \leq 25 \text{ pF}$ (1 card)
Output hold time	t_{OH2x}	1.5		ns	$C_L \geq 15 \text{ pF}$ (1 card)

4 INTERFACE

4.1 Pad Assignment and Descriptions

4.1.1 MicroSD Bus Pin Assignment

Table 4-1: MicroSD Bus Pin Assignment

Pin #	SD Mode			SPI Mode		
	Name	Type ¹	Description	Name	Type ¹	Description
1	DAT2	I/O /PP	Data Line[Bit2]	RSV		
2	CD/ DAT3	I/O/PP	Card Detect Line[Bit3]	CS	I	Chip Select (neg true)
3	CMD	PP	Command/Response	DI	I	Data In
4	Vdd	S	Supply Voltage	Vdd	S	Supply Voltage
5	CLK	I	Clock	SCLK	I	Clock
6	VSS	S	Supply voltage ground	VSS	S	Supply voltage ground
7	DAT0	I/O /PP	Data Line[Bit0]	DO	O/PP	Data Out
8	DAT1	I/O /PP	Data Line[Bit1]	RSV	-	Reserved (*)

Notes:

- 1) S: power supply; I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers;
- 2) The extended DAT lines (DAT1-DAT3) are input on power up. They start to operate as DAT lines after SET_BUS_WIDTH command. The Host shall keep its own DAT1-DAT3 lines in input mode, as well, while they are not used.
- 3) At power up this line has a 50KOhm pull up enabled in the card. This resistor serves two functions Card detection and Mode Selection. For Mode Selection, the host can drive the line high or let it be pulled high to select MicroSD mode. If the host wants to select SPI mode it should drive the line low. For Card detection, the host detects that the line is pulled high. This pull-up should be disconnected by the user, during regular data transfer, with SET_CLR_CARD_DETECT (ACMD42) command

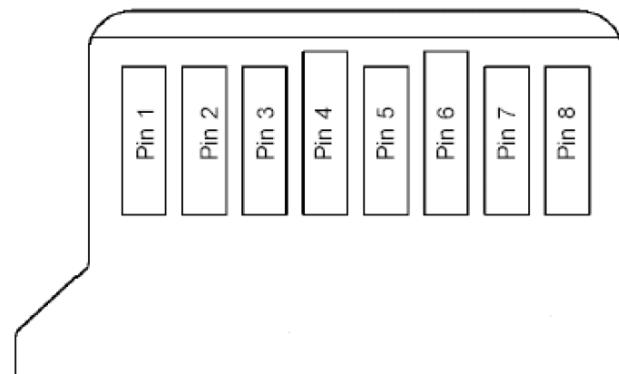
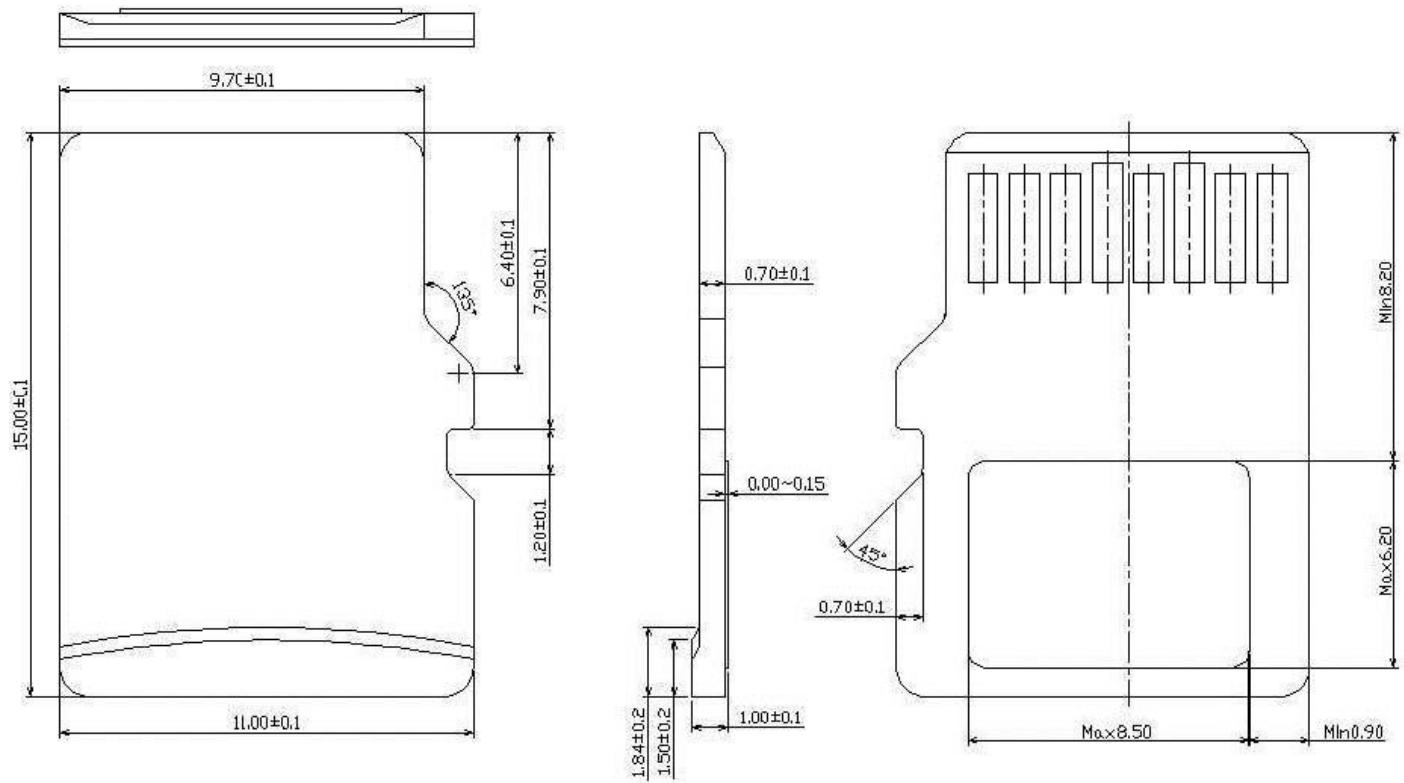


Figure 4-1: MicroSD Pin Assignment 9Back View of the Card)

Table 4-2: Registers


Name	Width	Description
CID	128bit	Card identification number; card individual number for identification. Mandatory
RCA ¹	16bit	Relative card address; local system address of a card, dynamically suggested by the card and approved by the host during initialization. Mandatory
DSR	16bit	Driver Stage Register; to configure the card's output drivers. Optional
CSD	128bit	Card Specific Data; information about the card operation conditions. Mandatory
SCR	64bit	SD Configuration Register; information about the MicroSD Memory Card's Special Features capabilities. Mandatory
OCR	32bit	Operation conditions register. Mandatory
SSR	512bit	SD Status; information about the card proprietary features. Mandatory
OCR	32bit	Card Status; information about the card status. Mandatory

Notes:

1) RCA register is not used (available) in SPI mode

5 Mechanical Information

Figure 5-1: MicroSD Case Dimensions

Note: All dimension in mm. Drawing is not to scale